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INTRODUCTION 
 Stream ecosystems around the world are being impacted by eutrophication. Eutrophication is the state of 
having high nutrient content and high organic production (Wetzel, 1995). It diminishes water quality by promoting 
the excessive growth of algae, cyanobacteria (blue-green algae) and macrophytes.  Environmental researchers have 
been making efforts to monitor, simulate and control eutrophication for more than two decades.  Various 
mathematical models have been developed and applied to rivers, lakes and estuaries (Lung, 1986; Thomann and 
Mueller, 1987; Kuo and Wu, 1991; Kuo et al., 1994).  Most water quality models simulate increases in 
eutrophication based on initial conditions of the water body, therefore, demanding comprehensive water quality 
sampling programs.  However, the conventional measurement of water quality requires in situ sampling and 
expensive and time-consuming laboratory work.  Due to these limitations, the sample size often cannot be large 
enough to cover the entire water body.  Therefore, the difficulty of synoptic and successive water quality sampling 
becomes a barrier to water quality monitoring and forecasting. 
 
 Remote sensing could overcome these constraints by providing an alternative means of water quality 
monitoring over a range of temporal and spatial scales.  A number of studies have shown that applications of remote 
sensing can meet the demand for the large sample sizes required of water quality studies conducted on the watershed 
scale.  Imagery from satellite and aircraft remote sensing systems have been used in the assessment of water quality 
parameters such as temperature, chlorophyll a, turbidity, and total suspended solids (TSS) for lakes and reservoirs 
(Lillesand et al., 1983; Lathrop and Lillesand, 1989; Ritchie and Cooper, 1991), estuaries (Verdin, 1985; Harding et 
al., 1995) and tropical coastal areas (Ruiz-Azuara, 1995).  
 
 Previous studies have focused on the discovery of the relationship between remote sensing data and in-situ 
measurements.  To make remote sensing tools useful for practical applications, water quality modeling must be 
incorporated with water quality monitoring programs.  Moreover, integrating a geographic information system (GIS) 
allows for the display of refined monitoring simulation results, rather than the use of traditional numerical figures.  
This provides a means by which water quality modeling data can be presented in a way that is practical for water 
quality management.  The specific objectives of this study were to:  1) establish a model to process remote sensing 
data and provide a rapid and efficient water quality monitoring technique for a wide area, 2) present predicted water 
quality conditions temporally and spatially on a georeferenced map and 3) display sequential (temporal) images of 
water quality predictions to provide decision makers with easily understandable information.  
 
Study Area 
 The study site is located in southwest Ohio and includes the Great Miami River (a tributary of the Ohio 
river), as well as adjacent water bodies, including fishponds, reservoirs and other rivers that are tributaries of the 
Ohio River. 
 
 The Great Miami River is situated in the Miami basin, which encompasses the drainage basins of both the 
Little and Great Miami Rivers (Figures 1 and 2).  The Miami basin includes most of southwestern Ohio and portions 
of Indiana.  The major waterways are the Great Miami River (including the tributaries, the Stillwater and Mad 
Rivers), the Little Miami River, and Whitewater River in Indiana. 
 
 Landforms in the Great Miami River Watershed have been shaped by glaciations, which left flat-to-gently-
rolling terrain, glacial till, and in some areas, exposed limestone and shale.  Soils in the watershed tend to be neutral-
to-slightly alkaline and drainage varies from well drained to very poorly drained, depending on parent material and 
topography.  The river lies within a broad valley with a wide flood plain (Ohio EPA, 1997). The area drained by the 
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major waterways includes both agricultural and urban lands (Ohio EPA, 1997).  The Miami basin includes the major 
cities of Cincinnati and Dayton, Ohio, and the smaller cities of Hamilton and Middletown, Ohio along the Great 
Miami River.  Currently, it is estimated that 70% of the total land area is used for agriculture, dominated by row 
crops of corn and soybeans.  Urban areas occupy 13% of the land, forested areas occupying 7%, and wetlands and 
water bodies occupy 1% of the total land area in the Miami basin (USGS, unpublished report). 
 
 The Ohio Environmental Protection Agency (Ohio EPA) noted that most industries and municipalities near 
the Great Miami River utilize groundwater as a principal water source but discharge treated wastewater to the river.  
Surface run off from agricultural or urban areas and industries along the river is not treated or impeded prior to 
entering the river (Ohio EPA, 1997). 
 
 Both the U.S. Environmental Protection Agency (USEPA) and the U.S. Geological Survey (USGS) have 
identified six important water quality issues in the Miami basin. These include:  1) the degradation of surface-and 
ground-water quality by urban and agricultural sources of fertilizer and pesticides, 2) assessing the relative 
importance of point and non-point sources to contaminant loads in the Great and Little Miami River basins, 3) 
habitat degradation and decreases in stream biodiversity as a result of urbanization, 4) the occurrence of water-borne 
pathogens in streams and shallow ground water in rural and urban land-use settings, 5) the effect of septic systems 
and combined sewer overflows on surface and shallow ground-water quality, and 6) the disruption and 
fragmentation of stream habitats by low dams and impoundments and their effects on fish and benthic invertebrate 
communities (Ohio EPA, 1997). 
 

  
 Figure 1: Location map.  Figure 2: Sampling site of the Great Miami River within  

the Miami River basin. 
 
 The presence of these environmental concerns in the Miami basin and the availability of ancillary data in 
the offices of the USEPA, OEPA, Ohio Department of Natural Resources (ODNR), Natural Resources Conservation 
Commission (NRCS) and USGS make the Miami basin an appropriate pilot study site for this type of research.  A 
map of the study locations within the Miami basin is shown in Figure 2. 
 
DATA 
 Ground truth (reference) and spectral data were collected from 26 January 1999 to 30 September 1999.  
The data can be roughly divided into two sets, preliminary and pilot, based on the date and location from which the 
data were collected and the amount of data collected.  The preliminary data sets were collected from 26 January 
1999 to 12 April 1999 and the pilot data sets were collected from 14 May 1999 to 30 September 1999.  In addition, 
all pilot data were collected from the Great Miami River between river miles (RM) 45 and 92, where remote sensing 
imagery was acquired in the latter part of the study period.  The purpose of the preliminary data was to examine the 
response of the Full Range Field Spectroradiometer (FieldSpec FR, Range 350-2,500 nm) to different water quality 
conditions found in the various water bodies.  Generally, the preliminary spectral reading was accompanied by 
turbidity measurements using a field turbidimeter.  In addition, in-vivo chlorophyll measurements were made on two 
additional dates.  The other major data set for this project includes two sets of hyperspectral imagery.  The airborne 
sensor that acquired the imagery was the Compact Airborne Spectrometer Imager (CASI), taken on 8 and 9 
September 1999. The CASI acquired imagery in 19 spectral bands and the HyMap acquired imagery in 126 spectral 
bands. 



 
 

 
Spectral Data Collection 
 Two types of spectral data were collected during the study period:  above water reflectance spectra and 
underwater radiance or irradiance spectra.  The reflectance data represent the ratio of reflected energy to incident 
energy with values ranging from 0.0 to 1.0.  The irradiance data represent actual energy received by the sensor as 
downwelling (irradiance) or upwelling (radiance) in units of power per unit area per unit wavelength (W/m2/sr/nm).  
The above water reflectance data were collected using the FieldSpec FR instrument from Analytical Spectra Devices 
(ASD), Inc., 1999.  The underwater radiance spectra were collected using two methods.  The first method used the 
FieldSpec FR instrument fitted with an underwater extension cord and an Underwater Remote Cosine Receptor 
(UWRCR).  The second method used a Li-Cor brand light meter (LI-189) with an underwater sensor (LI-1000).  
While the FieldSpec FR samples energy (reflected or radiant) at 1-nm intervals, the Li-Cor measured an aggregate 
energy in the visible range between 400 and 700 nm.  Due to the amount of time it takes to assemble and 
disassemble the underwater extension to the FieldSpec FR, the underwater extension was used only during the first 
day of the CASI flyover.  Thus, the instrument of choice for most underwater light measurement was the Li-Cor 
meter.  An apparatus was constructed to position the sensors at the desired depth, pointing upward to measure 
downwelling irradiance and downward to measure upwelling radiance). 
 
Imagery 
 On 8 and 9 September 1999, Hyperspectral Data International (HDI) flew the CASI sensor over the Great 
Miami River from approximately RM 45 to approximately RM 92.  This sensor acquired data in 19 spectral bands 
with a spatial resolution of 2 m.  Twenty three flightlines covered approximately 80 km (49.7 miles) of the Great 
Miami River, from Middletown, Ohio to the Taylorsville Dam, approximately 15 km (9.3 miles) north of Dayton, 
Ohio.  The imagery was delivered on 36 compact discs (CDs) in a band sequential (BSQ) file format that was 
imported with the Environment for Visualizing Images (ENVI) processing software.  Some of the flight lines were 
split into several segments for the purpose of pre-processing (Hyperspectral Data International, 2000). Data obtained 
with the hand-held spectroradiometer were analyzed, revealing seven spectral bands that demonstrated usefulness 
for water quality studies. These include, bands 2 (440 nm), 7 (625 nm), 11 (672 nm), 14 (705 nm), 16 (740 nm), 17 
(816 nm) and 18 (840 nm).  These are the minimum number of bands that could be used to develop preliminary 
water quality maps. 
 
METHODS 
 
Criteria of Band Selection 
 
Absorption 
 Through the components of light absorption and scattering coefficients, the water body controls the ratio 
between light scattering and absorption values, and thus determines the subsurface reflectance and in turn the 
emergent flux that will be sensed by radiometers (Jupp et al., 1994).  Because the medium composition affects the 
absorption and scattering coefficients differently at various wavelengths, the resulting spectral distribution can be 
mathematically modeled and/or measured by a spectroradiometer from above and under the water’s surface, and 
thus can be used to provide information about the water body. 
 
 Both field and laboratory spectrometric measurements of reflectance and absorbance are essential to 
developing semi-empirical and analytical (radiative transfer) models that can describe the interactions of light and 
in-water materials (Dekker, 1997).  Field spectrometry is the quantitative measurement of radiance, irradiance, 
reflectance or transmission of light in the field.  There are many reasons why it is desirable to perform spectral 
measurement in the field.  Field spectra of ground and water targets that are homogeneous at the scale of the 
imaging sensor and collected using ambient solar illumination can be used to convert radiance images to reflectance 
(Conel et al., 1987a,b).  Often, field spectra of target materials are collected to allow for more precise image analysis 
and interpretation (Goetz and Srivastava, 1985).  Hand-held spectroscopy is also used as a tool to perform feasibility 
studies to understand if and how a process or material of interest can be detected using remote sensing.  Field spectra 
of both the material(s) of interest and spectra of other materials present in the environment can be used to address 
such issues as what spatial and spectral resolutions are required for detection.  Lab spectroscopy measurements are 
also desirable because they are used for the determination of the inherent optical properties of water by measuring 
the absorption and scattering spectra of dissolved materials and particulate matter. 
 



 
 

Correlation 
 The correlation between temporally pooled groundtruth and spectral data was used to locate spectral 
signatures for water quality parameters.  Replicate groundtruth data at a sampling point were averaged before 
conducting the correlation.  Thus, when available, a data point represented the mean of three replicates.  There were 
two spectral samples, taken a few seconds apart, for each sampling point.  These values were averaged before 
calculating the correlation with the groundtruth data.  A statistical summary of all groundtruth data was first 
computed using descriptive statistical parameters (e.g., mean, maximum value, minimum value).  This allowed the 
data sets to be examined for the detection of the extreme outliers. 
   
 One of the tools used to quantify the relationship between the spectral data and the groundtruth data was a 
correlation matrix.  Scatter plots of groundtruth data against spectral data and of groundtruth parameters of interest 
against each other were made to investigate relationship trends that may not be captured by correlation values.  
Depending on the magnitude of the correlation values and the trend in the scatter plots, linear and non-linear 
equations were developed to predict water quality parameters from spectral indices.  
  
First Derivative 
 Spectroscopic derivatives are tools that can be used in spectroscopy (Philpot, 1991).  They are obtained by 
taking the difference between the reflectance of two bands and dividing that value by the difference between the 
wavelengths separating the two bands.  Then, a correlation test is performed between derivative reflectance and the 
field measurement of turbidity.  When the two bands used in the calculation are adjacent to one another, the result is 
the first derivative.  It is assumed that the components of variation are additive constants acting in a spectrally 
independent way over a spectral range of a few nanometers (nm).  This assumption fits well with knowledge of the 
behavior of radiation and reflectance in the atmosphere and water, moreover it is much less demanding than the 
assumption made for the use of broad waveband indices.  The mathematical basis of derivative spectroscopy has 
been reviewed (Dixit and Ram, 1985) and applied to the remote sensing of vegetation (Curran, 1989; Demetriades-
Shah et al., 1990; Curran et al., 1991). 
 
 The use of derivative spectroscopy for estimating turbidity and suspended particles is not frequently 
reported in the literature, however its potential can be inferred from previous studies (Dick and Miller, 1991; 
Philpot, 1991) and demonstrated using three laboratory spectra (Chen et al., 1991).  The derivative reflectance 
spectra vary in a regular way with turbidity.  Three regions of the spectrum at wavelengths near 450-550 nm, 675-
750 nm and 800-1000 nm show particularly large changes in derivative reflectance with turbidity and these are, 
therefore, candidate spectral regions for the estimation of turbidity with derivative spectroscopy.  
 
 
RESULTS AND DISCUSSION   
 The evaluation of band selection criteria leads to the selection of certain channels from the whole dataset 
for various water quality parameters. The bands integral to the most significant parameters, chlorophyll a and 
turbidity, are discussed below. 
 
Chlorophyll a 
 Chlorophyll a is a phytopigment present in all algae groups in inland waters and shows distinct absorption 
bands in the blue wavelength range at 440 nm and in the red wavelength range from 672-678 nm (Figure 3), leaving 
a maximum green reflectance due to an internal cell scattering process.  The red edge ascent near 705 nm that is 
narrowed to a peak by growing water absorption in the infrared is also correlated to increasing chlorophyll a 
contents (Figure 4).    



 
 

Figure 4: Reflectance spectra for known chlorophyll a 
values from CASI data. 
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 Based on the correlation with the ground truth data, one of the most important relationships observed in this 
study was the relationship between turbidity, TSS, and chlorophyll.  Turbidity was positively correlated with TSS 
(r = 0.76) and less positively correlated with chlorophyll (r = 0.37).  Turbidity was negatively correlated with Secchi 
disk depth (r = -0.55), river depth (r = -0.19), and pH (r  = -0.64).  TSS was moderately correlated with chlorophyll 
parameters (up to r = 0.51).  Of the chlorophyll parameters, turbidity and TSS generally appear to correlate better 
with a chlorophyll parameter that combines chlorophyll a and pheophytin data.  Dissolved oxygen showed a low 
positive correlation (r = 0 to 0.49) with most parameters, but with a relatively stronger value with chlorophyll 
variables (r = 0.44), asserting that more living algal activity enriches the water with DO through the process of 
photosynthesis.   
 
 The two most significant bands, 672 nm and 705 nm, were selected for the calibration of chlorophyll a 
concentration.  The ratio of 672 and 705 nm wave bands produced a good correlation (r = 0.86) with the 
chlorophyll a concentration (Figure 5). Using this linear model, a chlorophyll-a distribution map of the river was 
made (Figure 6). It is interesting to see that a plume of relatively clean water (lower chlorophyll-a concentration) is 
entering the river from the wastewater treatment plant. 
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Figure 5: Correlation between spectral index and chlorophyll concentration obtained from the ground truth data. 

 

Figure 3: Absorption maxima and minima in 
reflectance spectra of pure algal culture.   



 
 

 
Figure 6: Chlorophyll a concentration map developed from the spectral index. 

 
Turbidity 
 To examine the association between spectral reflectance and turbidity, correlation analyses were applied to 
the Fieldspec FR channels between 400 and 880 nm.  A strong relationship existed between turbidity and reflectance 
with r = 0.8 at (625-440)*705/672.  However, this relationship resulted in much higher predicted values of turbidity 
in the river than the turbidity values that were actually collected on the ground.  In an effort to improve results, first 
derivatives were calculated by dividing the difference between successive reflectivity values by the wavelength 
interval separating them.  A correlogram for turbidity was developed using the first derivative and normal 
reflectance at a particular wavelength.  Figure 7 illustrates the difference between the correlation coefficients from 
the raw reflectance data and the first derivative method.  
 
 The maximum correlation, r = 0.76 was found at the derivative of (700-675)/25 nm (Figure 7).  Therefore, 
the bands at this wavelength were selected for the turbidity measurement. 
The first derivative reflectance and turbidity scatter plot (Figure 8) fits with a linear model:   
 

Turbidity = 1224.4* (R(685)) + 3.9561           with R2 = 0.7917 
 

 Using this linear model, a turbidity map of the river was made (Figure 9).  This model showed a strong 
agreement between observed and estimated turbidity values (Figure 10). 
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Figure 9: Turbidity distribution map of GMR, relatively clear water is entering into  

the river from the wastewater treatment plant. 
 

 

Figure 7: Comparison of first derivative and 
normal correlogram, higher correlation obtained 
from the first derivative. 

Figure 8: Correlation between first derivative 
reflectance and turbidity obtained from the field 
spectrometer data. 



 
 

Observed vs Estimated Turbidity 
(CASI Data with First Derivative)
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Figure 10: Observed and estimated turbidity plot, high R2 reflects the validity of the results. 

 
 

 
CONCLUSIONS 
 Remotely sensed hyperspectral data have been used successfully to map the spatial distribution of 
chlorophyll a concentrations and turbidity in the Great Miami River, Ohio.  Spectral signatures from the hand-held 
spectrometer and airborne hyperspectral imagery showed promising correlations with ground truth water quality 
parameters such as algal chlorophyll concentrations, turbidity values, secchi disk depths and light extinction 
coefficients.  Due to the presence of the strong correlation between laboratory-measured TSS and derivative 
reflectance with both field spectrometer data and CASI data, a first derivative spectrometry was used which showed 
promising results for the low-turbidity conditions of the Great Miami River.  This was not possible with normal (i.e., 
ratio or combination) indices due to the lack of gradient in actual turbidity measurements.  The imagery and the final 
map confirmed this uniformity in the distribution of turbidity for most of the river.  Finally, maps of relative spatial 
distributions of chlorophyll and turbidity were created from the selected signatures derived from the imaging 
spectrometer data. 
 
 The hyperspectral chlorophyll and turbidity map demonstrate the spatial variability of the contents of 
chlorophyll and suspended matter that help determining the point and non point sources responsible for the spatial 
variability for the Great Miami River. As a result these maps may help to obtain more representative monitoring 
locations of suspended matter and related parameters as chlorophyll and secchi depth. Overall conclusion of this 
study was that the combined use of water quality model results, hyperspectral data and field spectrometer in situ data 
leads to better monitoring and understanding of suspended matter and transparency in the Great Miami River.  
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